\(\int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\) [405]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 213 \[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 \left (6 a A b+3 a^2 B+5 b^2 B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 \left (5 a^2 A+7 A b^2+14 a b B\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a^2 A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 a (2 A b+a B) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^2 A+7 A b^2+14 a b B\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}} \]

[Out]

2/7*a^2*A*sin(d*x+c)/d/sec(d*x+c)^(5/2)+2/5*a*(2*A*b+B*a)*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2/21*(5*A*a^2+7*A*b^2+
14*B*a*b)*sin(d*x+c)/d/sec(d*x+c)^(1/2)+2/5*(6*A*a*b+3*B*a^2+5*B*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x
+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2/21*(5*A*a^2+7*A*b^2+14*B*a
*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec
(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {4109, 4132, 3854, 3856, 2720, 4130, 2719} \[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 \left (5 a^2 A+14 a b B+7 A b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 \left (5 a^2 A+14 a b B+7 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 \left (3 a^2 B+6 a A b+5 b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a^2 A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 a (a B+2 A b) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)} \]

[In]

Int[((a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(7/2),x]

[Out]

(2*(6*a*A*b + 3*a^2*B + 5*b^2*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*(
5*a^2*A + 7*A*b^2 + 14*a*b*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*a^2
*A*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (2*a*(2*A*b + a*B)*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + (2*(5*
a^2*A + 7*A*b^2 + 14*a*b*B)*Sin[c + d*x])/(21*d*Sqrt[Sec[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3854

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 4109

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2*(csc[(e_.) + (f_.)*(x_)]*(B_
.) + (A_)), x_Symbol] :> Simp[a^2*A*Cos[e + f*x]*((d*Csc[e + f*x])^(n + 1)/(d*f*n)), x] + Dist[1/(d*n), Int[(d
*Csc[e + f*x])^(n + 1)*(a*(2*A*b + a*B)*n + (2*a*b*B*n + A*(b^2*n + a^2*(n + 1)))*Csc[e + f*x] + b^2*B*n*Csc[e
 + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rule 4130

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[A*Cot[e
+ f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a^2 A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}-\frac {2}{7} \int \frac {-\frac {7}{2} a (2 A b+a B)+\left (A \left (-\frac {5 a^2}{2}-\frac {7 b^2}{2}\right )-7 a b B\right ) \sec (c+d x)-\frac {7}{2} b^2 B \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}-\frac {2}{7} \int \frac {-\frac {7}{2} a (2 A b+a B)-\frac {7}{2} b^2 B \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x)} \, dx-\frac {1}{7} \left (-5 a^2 A-7 A b^2-14 a b B\right ) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 a (2 A b+a B) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^2 A+7 A b^2+14 a b B\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}-\frac {1}{21} \left (-5 a^2 A-7 A b^2-14 a b B\right ) \int \sqrt {\sec (c+d x)} \, dx-\frac {1}{5} \left (-6 a A b-3 a^2 B-5 b^2 B\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx \\ & = \frac {2 a^2 A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 a (2 A b+a B) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^2 A+7 A b^2+14 a b B\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}-\frac {1}{21} \left (\left (-5 a^2 A-7 A b^2-14 a b B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx-\frac {1}{5} \left (\left (-6 a A b-3 a^2 B-5 b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = \frac {2 \left (6 a A b+3 a^2 B+5 b^2 B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 \left (5 a^2 A+7 A b^2+14 a b B\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a^2 A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 a (2 A b+a B) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^2 A+7 A b^2+14 a b B\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 6.75 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.76 \[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {\sqrt {\sec (c+d x)} \left (84 \left (6 a A b+3 a^2 B+5 b^2 B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+20 \left (5 a^2 A+7 A b^2+14 a b B\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\left (42 a (2 A b+a B) \cos (c+d x)+5 \left (13 a^2 A+14 A b^2+28 a b B+3 a^2 A \cos (2 (c+d x))\right )\right ) \sin (2 (c+d x))\right )}{210 d} \]

[In]

Integrate[((a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(7/2),x]

[Out]

(Sqrt[Sec[c + d*x]]*(84*(6*a*A*b + 3*a^2*B + 5*b^2*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 20*(5*a^2
*A + 7*A*b^2 + 14*a*b*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + (42*a*(2*A*b + a*B)*Cos[c + d*x] + 5*(
13*a^2*A + 14*A*b^2 + 28*a*b*B + 3*a^2*A*Cos[2*(c + d*x)]))*Sin[2*(c + d*x)]))/(210*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(547\) vs. \(2(241)=482\).

Time = 26.11 (sec) , antiderivative size = 548, normalized size of antiderivative = 2.57

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (240 A \,a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+\left (-360 A \,a^{2}-336 A a b -168 B \,a^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (280 A \,a^{2}+336 A a b +140 A \,b^{2}+168 B \,a^{2}+280 B a b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-80 A \,a^{2}-84 A a b -70 A \,b^{2}-42 B \,a^{2}-140 B a b \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+25 A \,a^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+35 A \,b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-126 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b +70 B a b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-63 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}-105 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}\right )}{105 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(548\)
parts \(\text {Expression too large to display}\) \(741\)

[In]

int((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*A*a^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c
)^8+(-360*A*a^2-336*A*a*b-168*B*a^2)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(280*A*a^2+336*A*a*b+140*A*b^2+16
8*B*a^2+280*B*a*b)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-80*A*a^2-84*A*a*b-70*A*b^2-42*B*a^2-140*B*a*b)*si
n(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+25*A*a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*E
llipticF(cos(1/2*d*x+1/2*c),2^(1/2))+35*A*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*El
lipticF(cos(1/2*d*x+1/2*c),2^(1/2))-126*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipt
icE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b+70*B*a*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ell
ipticF(cos(1/2*d*x+1/2*c),2^(1/2))-63*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Elliptic
E(cos(1/2*d*x+1/2*c),2^(1/2))*a^2-105*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Elliptic
E(cos(1/2*d*x+1/2*c),2^(1/2))*b^2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*
cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 254, normalized size of antiderivative = 1.19 \[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {5 \, \sqrt {2} {\left (5 i \, A a^{2} + 14 i \, B a b + 7 i \, A b^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} {\left (-5 i \, A a^{2} - 14 i \, B a b - 7 i \, A b^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 \, \sqrt {2} {\left (-3 i \, B a^{2} - 6 i \, A a b - 5 i \, B b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 \, \sqrt {2} {\left (3 i \, B a^{2} + 6 i \, A a b + 5 i \, B b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (15 \, A a^{2} \cos \left (d x + c\right )^{3} + 21 \, {\left (B a^{2} + 2 \, A a b\right )} \cos \left (d x + c\right )^{2} + 5 \, {\left (5 \, A a^{2} + 14 \, B a b + 7 \, A b^{2}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{105 \, d} \]

[In]

integrate((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

-1/105*(5*sqrt(2)*(5*I*A*a^2 + 14*I*B*a*b + 7*I*A*b^2)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c
)) + 5*sqrt(2)*(-5*I*A*a^2 - 14*I*B*a*b - 7*I*A*b^2)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))
 + 21*sqrt(2)*(-3*I*B*a^2 - 6*I*A*a*b - 5*I*B*b^2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x +
 c) + I*sin(d*x + c))) + 21*sqrt(2)*(3*I*B*a^2 + 6*I*A*a*b + 5*I*B*b^2)*weierstrassZeta(-4, 0, weierstrassPInv
erse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2*(15*A*a^2*cos(d*x + c)^3 + 21*(B*a^2 + 2*A*a*b)*cos(d*x + c)^2
 + 5*(5*A*a^2 + 14*B*a*b + 7*A*b^2)*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/d

Sympy [F]

\[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \left (a + b \sec {\left (c + d x \right )}\right )^{2}}{\sec ^{\frac {7}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((a+b*sec(d*x+c))**2*(A+B*sec(d*x+c))/sec(d*x+c)**(7/2),x)

[Out]

Integral((A + B*sec(c + d*x))*(a + b*sec(c + d*x))**2/sec(c + d*x)**(7/2), x)

Maxima [F]

\[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^2/sec(d*x + c)^(7/2), x)

Giac [F]

\[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^2/sec(d*x + c)^(7/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^2}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}} \,d x \]

[In]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^2)/(1/cos(c + d*x))^(7/2),x)

[Out]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^2)/(1/cos(c + d*x))^(7/2), x)